2006 INTERNATIONAL CONFERENCE ON PERPETUAL PAVEMENT

www.ohio.edu/icpp/

Perpetual Asphalt Pavements: Materials, Analysis/Design, Construction, and Other Considerations

Carl L. Monismith Pavement Research Center University of California, Berkeley

> 2006 International Conference on Perpetual Pavement Columbus, Ohio September 13-15, 2006

Presentation Overview Background contributions to current approach to long-life (perpetual pavement) design Example design and construction (I-710 full depth section) Conference sessions Categories of papers Additional considerations/challenges

MAKING THE BEST USE OF LONG-LIFE PAVEMENTS IN EUROPE: THE WORK OF ELLPAG

Brian Ferne and Mike Nunn

ORITE International Conference on Perpetual Pave Columbus, Ohio - September 2006

is a FEHRL Working Group

(Forum of European National Highway Research Laboratories)

with support from CEDR

(Conference of European Directors of Roads)

Four main aims of ELLPAG

- to determine best designs
- to determine economic benefits
- to understand deterioration mechanisms
- to encourage their use

With a particular emphasis on the needs of the structural support layers

Perpetual Pavements: The Ontario Experiment

Becca Lane (MTO)
Sandy Brown (OHMPA)
Susan Tighe (CPATT)

Ontario Hot Mix Producers Association

Design Concept

- Thin asphalt pavements readily crack and rut under repeated loading of heavy traffic
- In thick asphalt pavements, the potential for fatigue cracking is reduced and pavement distresses (cracking and rutting) occur only in the surface layer.
- When surface distresses reach an unacceptable level, the surface course is removed and replaced.
- Periodically renewing the driving surface keeps the pavement serviceability high throughout the life of the pavement.

Table 1: Scheduled Perpetual Pavement in Ontario

Route	Hwy 402	Hwy 406	Hwy 7	Red Hill Creek Expressway
Location	Sarnia	Thorold	Carlton Place	Hamilton
Authority	МТО	MTO	МТО	City of Hamilton
AADT	20,400	25,470	21,900	70,000
Percent Trucks	25%	7%	10%	
Design ESALs (millions)	38 (18 years) 146 (50 years)	42 (50 years)	28 (30 yrs)	40 (20 years) 90 (50 years)
Designer	МТО	MTO / Golder Associates	MTO / Jacques Whitford	Golder Associates
Design Methodology	AASHTO '93 DARWin / PerRoad 2.4	AASHTO '93 DARWin	AASHTO '93 DARWin	AASHTO '93 DARWin / PerRoad 2.4
Performance Period	50 years	50 years	50 years	50 years
Total HMA Thickness (mm)	340	250	230	240
Rich Bottom Mix in Total HMA	Trial 1 – 80 mm Trial 2 – None	Yes 80 mm	Yes 80 mm	Yes 80 mm
Total Granular Base (mm)	550	400	500	540

SEASONAL AND LOAD RESPONSE INSTRUMENTATION OF THE WAY-30 PERPETUAL PAVEMENTS

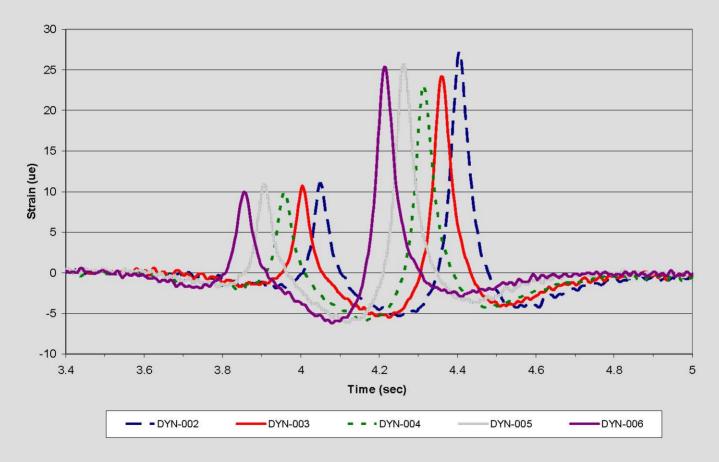
Shad M. Sargand, Russ Professor

Issam S. Khoury, Research Engineer Department of Civil Engineering Ohio University

Michael T. Romanello, Staff Engineer, BBC & M Engineering, Inc., Columbus, OH

J. Ludwig Figueroa, Professor Department of Civil Engineering Ohio University

September 13, 2006



Outline

- Test Section Location and Characteristics.
- Instrumentation.
- Load Response Testing.
- Preliminary Results.
- Summary and Conclusions.

Longitudinal Strain – Sect. 664 (AC2-390182) FRL Layer

30 mph Test: ODOT 28.2 Kip Single Axle Truck

Reconstructing the Silk Road in Afghanistan

DISCUSSION: The application of perpetual asphalt pavement technology for the reconstruction of the Kandahar to Herat road in Afghanistan

Presented by: Kent Lande, PE Alberto Garcia, PE Eric Cook, PE

September 13, 2006

Pavement conditions

Rehabilitation of Economic Facilities and Services

Security

Security subcontractor

- Expatriate resources for key staff
- GOA MOI Security personnel
- External coordination with:
 - Government of Afghanistan MOI
 - US Military and ISAF
 - Provincial officials and village elders
- De-mining
 - Preconstruction requirement
- Additional planning factors
 - Physical security of campsites
 - Vehicle movement
 - Worksites
- Quality of life for project staff
- Cost/benefit
 - Approx 8% of total program value

Base Type Selection

Shad Sargand

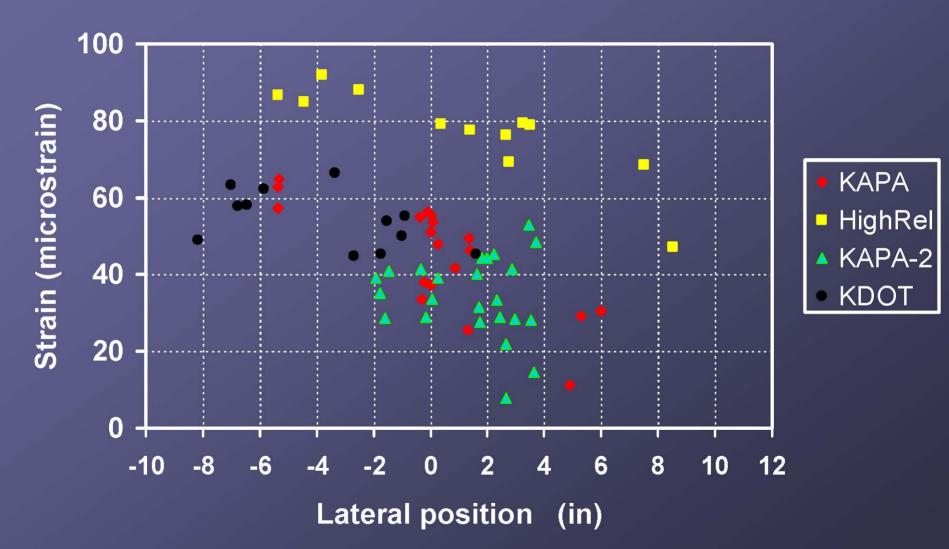
International Conference on Perpetual Pavement

Columbus OH

September 2006

- Pavement performance
- Purpose of base
- Base type effect on subgrade moisture
- Base type effect on deflection
- Base type effect on surface distress
- Findings
- Design Considerations
- Recommendations

International Conference on Perpetual Pavement September 13, 2006


The dynamic response of Kansas perpetual pavements under vehicle loading

Stefan Romanoschi, KSU Andrew Gisi, KDOT Cristian Dumitru, KSU

Pa	avement	Structure	S N			
1	2	3	4			
40 mm HMA SM 9.5A : PG 70-28 Mix S						
60 mm HMA SM 19A: PG 70-28 Mix M						
SM 19A 225 mm PG 70-22 Mix 1	SM 19A 187.5 mm <i>PG 64-22</i> <i>Mix 4</i> 150 mm	SM 19A: 175 mm <i>PG</i> 64-22 <i>Mix 4</i> SM 19A: 50 mm <i>PG</i> 64-22 <i>3% VTM Mix 3</i>	SM 19A 300 mm PG 64-22 Mix 4			
150 mm Soil -Lime	Soil -Lime	150 mm Soil -Lime	150 mm			
SUBGRADE Soil -Lime						
KAPA	High-Rel	KAPA-2	KDOT 4			

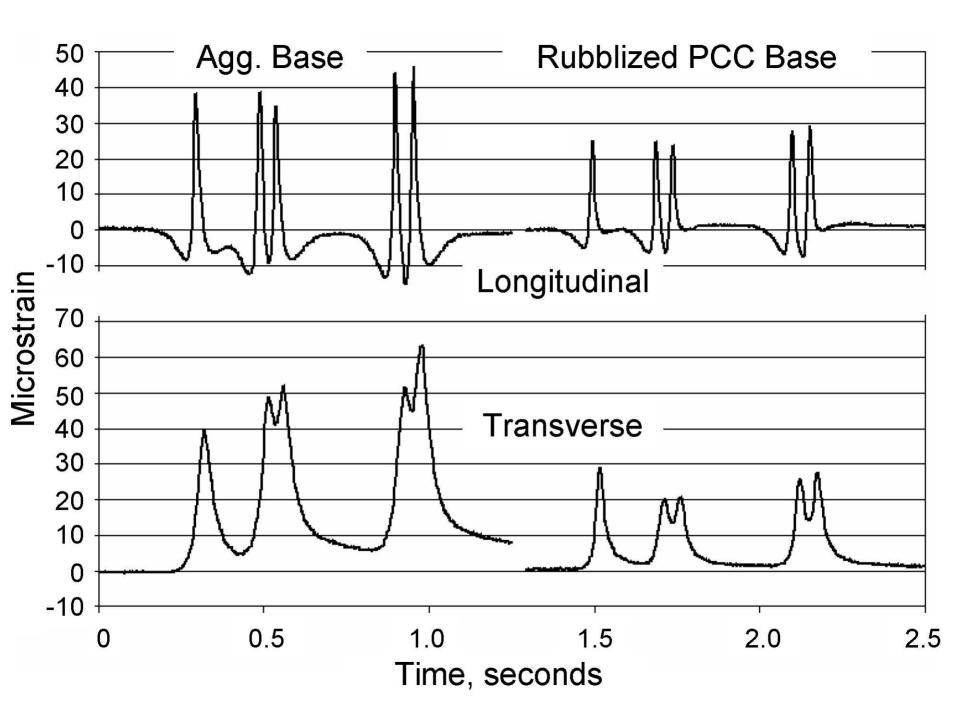
Transverse Strain – 45mph

Instrumentation and Analysis of a Perpetual Pavement on an Interstate Freeway in Oregon Todd Scholz, Ph.D., P.E. Jim Huddleston, P.E. Elizabeth Hunt, P.E. James Lundy, Ph.D., P.E. Norris Shippen

Presentation Outline

 Introduction Project Location Structural Design Mechanistic-Empirical Analysis Pavement Instrumentation Preliminary Data Conclusions

Structural Design -Comparison



New Aggregate Base

Open HMA

Dense

HMA

Pennsylvania's Bradford Bypass A Perpetual Pavement

Carlos E. Rosenberger, P.E., Asphalt Institute Thomas J. Zurat, Jr., P.E., Pennsylvania Department of Transportation Ronald J. Cominsky, P.E., Pennsylvania Asphalt Pavement Association Introduction

Thickness Design

Material Selection

Economics

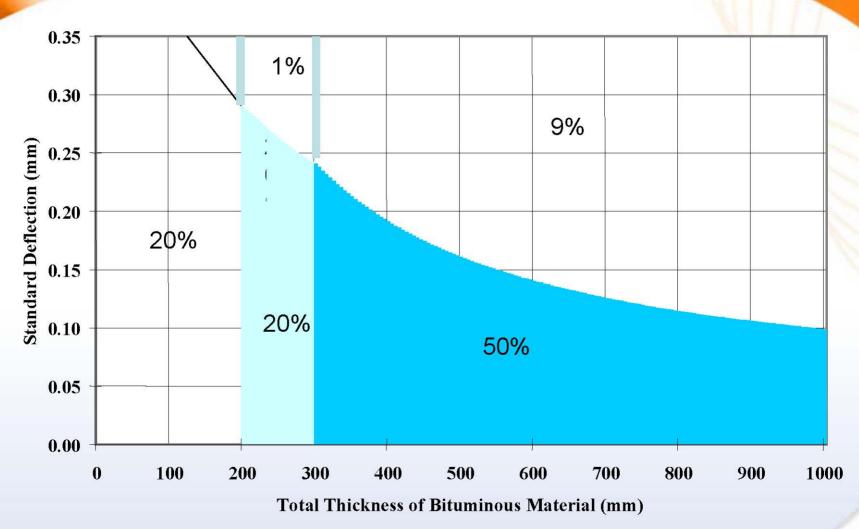
Advertising and Awarding the Contract Construction Follow-Up

中美合作项目-永久路面 Sino-U.S. Cooperation Project---Perpetual Pavement

山东省交通厅公路局 Shandong DOT Highway Bureau 副局长 研究员 杨永顺 Yongshun Yang, Vice Director 2006年9月•Columbus, Ohio • September 2006

超载车辆问题 Overweight Vehicles

Dynamic Pavement Response


Assessment and Maintenance of Long-Life Flexible Pavements

Presented by Mike Nunn

International Conference on Perpetual Pavements

Columbus, Ohio 13-15 September 2006

Potential impact of RP's on HA network?

1Sr

International Conference on Perpetual Pavement

"Laboratory Investigation of Anisotropic Behaviour of HMA"

AUTHORS: Prof. Robert Liang Dr. Bilal Abu Alfoul Mohammad Khasawneh

PRESENTER: Mohammad Khasawneh

Sep. 14, 2006

Providing solutions to highway building materials problems

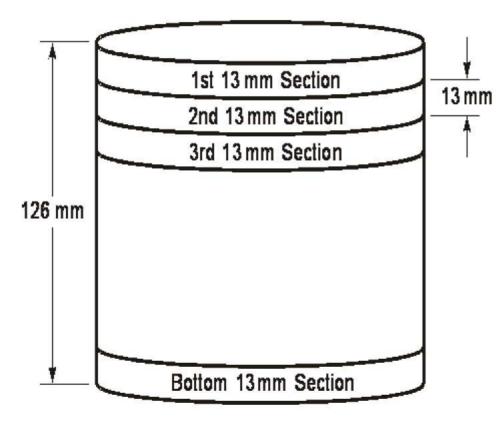
Asphalt Aging - Actual versus Predicted

Mike Farrar, Mike Harnsberger, Ken Thomas, William Wiser, Janet Wolf

Western Research Institute

September 14, 2006

International Conference on Perpetual Pavement Columbus, Ohio



Asphalt field aging compared to predicted aging based on:

- Global Aging System
 - □ Published 1995 (AAPT, Vol. 64)
 - Integral part of NCHRP 1-37A Mechanistic-Empirical Design Guide
- PAV Model
 - □ NCHRP 9-23
 - □ Suggested as an addendum to AASHTO R-28
 - "Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV)"

Shoulder coring (Nov. 2005)

Conclusions

- Reduction of extracted viscosity from the top 13-mm to the next 13-mm ranged from 48% to 70% (average 65%)
- Minor differences between the 13-mm sections below the top 13-mm section
- Extracted four-year viscosity is substantially greater than the GAS predicted viscosity, particularly in the top 13mm of pavement
- In this limited analysis of the PAV aging model confined to just AZ1-1, the depth of the RTFO/PAV viscosity corresponding to 48 months was estimated at 40 mm

A Practical Guide to Low Volume Road Perpetual Pavement Design

ROAD MAY BE SUBJECT TO SUDDEN CATASTROPHIC SINKHOLE COLLAPSE

LÉE

148

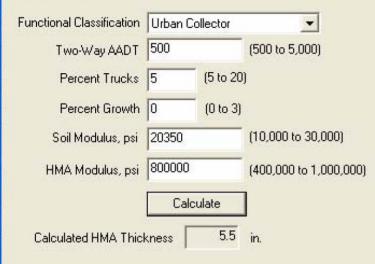
COUNTY

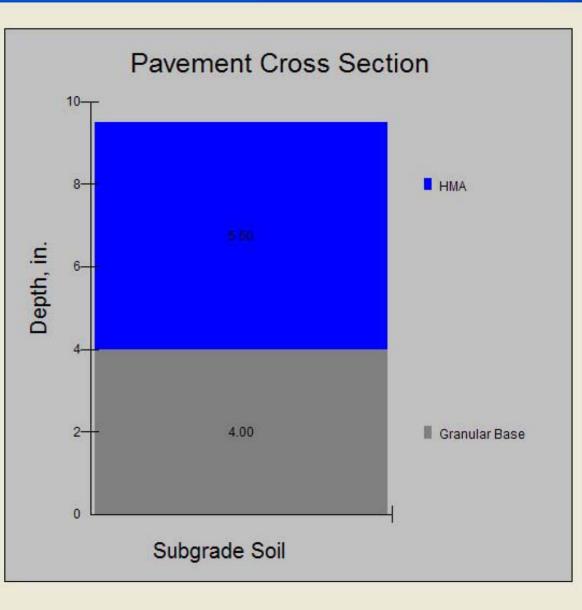
DETOUR

David H. Timm David E. Newcomb S. Suresh Immanuel

LIMIT 13 TONS

Design Equation

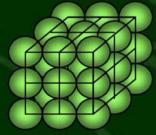

HMA =


$C_0 + C_1^*AADT$ + $C_2^*\%$ Trucks + $C_3^*\%$ Growth + C_4^* Soil Stiffness + C_5^*HMA Stiffness

Coefficient	Urban Collector	Rural Local Collector
C ₀	10.963	11.963
C ₁	6.661E-4	6.753E-4
C ₂	0.120	0.124
C ₃	0.258	0.234
C ₄	-1.150E-4	-1.276E-4
C ₅	-5.071E-6	-5.486E-6
R ²	0.942	0.938

PerRoad LVR

🏯 PerRoadLVR



?

Cancel

RUSS COLLEGE of Engineering Technology

Resilient Modulus Prediction Models for Fine-Grained Soils in Ohio: Preliminary Study

ICPP Sept. 14, 2006 Columbus, OH

Teruhisa Masada, PhD Associate Professor Department of Civil Engineering Ohio University

Summary/Conclusions – Page 3

- Linear relationship between resilient modulus and octahedral stress ratio in logarithmic scale
- Five stress (power, bilinear, hyperbolic, semi-log, octahedral) models evaluated in light of the latest laboratory test data
- Hyperbolic model may be the most reliable. Deviatoric stress alone can adequately express the resilient behaviors of the A-4 soil samples.

Final Comment

<u>AASHTO Universal Model</u>

$$M_{R} = k_{1} p_{a} \left(\frac{\theta}{p_{a}}\right)^{k_{2}} \left(\frac{\tau_{oct}}{p_{a}} + 1\right)^{k_{3}}$$

May not be a good model for fine-grained soils Since this model does not have the deviatoric Stress (σ_d) as one of its parameters.

Mix Type Selection for Perpetual Pavements

International Conference on Perpetual Pavements Columbus, Ohio September 14, 2006

Recommendations for Base

Dense, Fine ■ 19 – 37.5 mm Lift Thickness 3 to 4X NMAS All Traffic Dense, Coarse 19 – 37.5 mm Lift Thickness 4 to 5X NMAS All Traffic ATPB 19 – 37.5 mm Lift Thickness 2 to 4X NMAS High Traffic

Recommendations for Intermediate

Dense, Fine ■ 19 – 25 mm Lift Thickness 3 to 4X NMAS All Traffic Levels Dense, Coarse ■ 19 – 25 mm Lift Thickness 4 to 5X NMAS All Traffic Levels

Recommendations for Surface

Dense, Fine ■ 4.75 – 19 mm Lift Thickness 3 to 4X NMAS All Traffic Levels Dense, Coarse ■ 9.5 – 19 mm Lift Thickness 4 to 5X NMAS High Traffic

Recommendations for Surface (cont.)

SMA ■ 9.5 – 19 mm Lift Thickness 2.5 to 4X NMAS Highly recommended for High Vol. Mod. recommendation for Med. Vol. OGFC ■ 9.5 – 12.5 mm Lift Thickness 2 to 3X NMAS

Recommended for High Vol.

Perpetual Pavement Evaluation Using the Viscoelastic Continuum Damage Finite Element Program

> Y. Richard Kim, Shane Underwood Sungho Mun, Murthy Guddati North Carolina State University

Presented at The International Conference on Perpetual Pavement September 14, 2006

VEPCD-FEP++ Research at NCSU

• Goal

 Develop a comprehensive mechanistic model capable of accurately describing asphalt concrete pavement response and performance, including fatigue cracking (both bottom-up and top-down), rutting, and thermal cracking, under moving wheel loads.

1

MultiSmart3D - The Next Generation Algorithm for Pavement Design

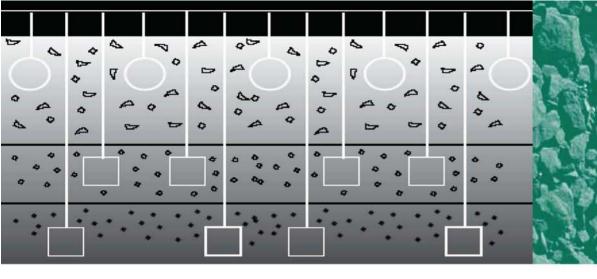
Ernie Pan

Computer Modeling & Simulation Group Dept. of Civil Engineering Dept. of Applied Mathematics University of Akron, Ohio Email: <u>pan2@uakron.edu</u> Tel: 330-972-6739

International Conference on Perpetual Pavement September 13-15, 2006

Sponsored by ODOT/FHWA

Current Limitations of Elastic Layered Pavement Analysis



- > Modulus Variation with Depth is Averaged.
- Limited Number of Elastic Layers.
- Classic Contact Pressure Assumptions:
 - Equal to Inflation Pressure
 - Uniform Distribution
- Geometry of Loaded Area:
 - Circular Loaded Area
 - Axial Symmetry

MultiSmart3D Program

2006 INTERNATIONAL CONFERENCE ON PERPETUAL PAVEMENT

September 13-15, 2006 Hilton Columbus at Easton, Columbus, Ohio

Multi-Body Dynamic Modeling of the Expected Performance of Accelerated Pavement Testing Facilities

prof. Ezio Santagata Politecnico di Torino - Italy

EXPANDING THE REALM OF POSSIBILITY

International Conference on Perpetual Pavements Columbus, Ohio September 14, 2006

Application of the Endurance Limit in M-E Pavement Design

Harold L. Von Quintus, P.E.

Fatigue Characteristics of Rich Bottom Bases (RBB) for Structural Design of Perpetual Pavements

Conclusions / Findings

- RBB procedure increases flexural modulus
 - Extra 0.5% binder, 3-4% air voids
 - Laboratory handling may influence also
- RBB procedure improves the fatigue equation
 - Impact of these modifications may be considered marginal until investigated further

Conclusions / Findings

- Fatigue Endurance Limit (FEL) exists
 - Strain below which extended fatigue life is found
- FEL varies with flexural modulus
 - Larger FEL strain at lower modulus
 - Is this a mixture effect?
 - Is this a binder effect?
- The <u>Same</u> FEL was found for standard and RBB mixtures
 - Binder type primarily responsible for FEL strain limit, not mixture changes

Conclusions / Findings

- Healing potential (binder molecular chemistry) offsets damage at low strain values.
 - Polymer modification can increase the FEL strain limit
- Healing is active at all times during the loading – unloading cycle in a fatigue test, and in the field, not just rest periods between load pulses.

Endurance Limit of HMA Mixtures

Brian Prowell Ray Brown

Objectives

- Confirm existence of Endurance Limit
- Effect of Material Properties on Endurance Limit
- Shortcut method to determine Endurance Limit
- Suggested changes to design guide to include Endurance Limit

Conclusions

- 500 million load repetitions is a practical maximum for 40 years of traffic
- Thus, considering a shift factor of 10, 50 million cycles in the lab approximates the maximum number of load repetitions
- The single-stage Weibull function offers a conservative approach to extrapolate fatigue stiffness data

Conclusions (Continued)

- There is an endurance limit
- An average endurance limit of approximately 150 micro-strain was indicated for the PG 64-22 mix; 225 micro-strain for the PG 76-22 mix
- Optimum plus asphalt content may increase the endurance limit slightly

CONSIDERING HOT-MIX –ASPHALT FATIGUE ENDURANCE LIMIT IN FULL-DEPTH M-E PAVEMENT DESIGN

Marshall R. Thompson Samuel H. Carpenter

Department of Civil Engineering University of Illinois @ U-C

CONFERENCE SUMMARY

- Perpetual Pavements are a world-wide phenomena, being designed and built around the globe
- A fatigue endurance limit (FEL) does exist. It is mix dependent, mostly related to the binder used
- The FEL can be practically determined in the laboratory
- Various analyses are available to effectively design perpetual pavements

CONFERENCE SUMMARY

- Enough pavements have been instrumented to verify that they can be reliably designed and built so as to not exceed the FEL
- Existing roadway networks can be assessed to determine which pavements are perpetual, upgradable to perpetual or determinate life
- Practicable guidelines exist to select proper mixes for perpetual pavements
- Practicable guidelines exist to apply the perpetual pavement concept to low volume roads